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ABSTRACT

The fracture strengths of two large batches of
A357-T6 cast aluminum coupon specimens were compared by
using two-parameter Weibull analysis. The minimum num-
ber of these specimens necessary to find the fracture
strength of the material was determined. The applica-
bility of three-parameter Weibull analysis was also
investigated. A design methodology based on the combi-
nation of elementary stress analysis and Weibull sta-
tistical analysis is advanced and applied to the design
of a spherical pressure vessel shell. The results from
this design methodology are compared with results from
the applicable ASME pressure vessel code.

INTRODUCTION

The ability to design static structures and
rotating machine components that can survive antici-
pated loads and stresses in both normal and overload
applications is an important safety and economic
requirement. Common design practice for many indus-
trial applications tends toward placing large safety
factors in the design of structures and machinery.
Although this practice results in satisfactory opera-
tion, usually the machine element is larger, weighs
more, and utilizes materials less efficiently. An
alternative is to design structural elements to oper-
ate at loads closer to their failure strength and then
proof test the end product to ensure the safety of
those items that will reach the consumer. However,
this method can also be costly, perhaps more so than
designing with a conservative safety factor.

In aerospace applications, designing in a conserv-
ative mode with targe safety factors is precluded
because the resultant structure would be either too
heavy or too bulky to fly. Hence, designing closer to
the failure limit is almost mandatory in aerospace
applications. The issue becomes one of how to deter-
mine the failure limit of a structure or machine
element.

*Fellow, ASME.

A further issue confronting the engineer is the
determination of the stress in a structure below which
no fatigue, creep, or fracture failures will occur.

For pressure vessels elaborate sets of standards have
been developed that ensure with reasonable engineering
certainty that for known materials no failure will
occur over the usable design life (ASME, 1987). How-
ever, for new or untested materials for which no field
experience exists, how should this determination be
made? MWhat kind of tests should be conducted? How
many specimens should be run? How can results from
coupon specimens be extrapolated to full-size struc-
tures? How can the probability of survival of a struc-
ture subjected to known loads be determined with
reasonable engineering certainty?

Many investigators over the years have approached
these questions in the areas of fracture and fatigue
(Weibull, (1939), Heller (1972), Little and Ekvall
(1979), Abelkis and Hudson (1980), Augusti, et al.
(1984), Ioannides and Harris (1985), and Zaretsky
(1987)). Primary consideration has been given to the
determination of low failure probabilities. That is,
the probability that a structure will fail will be less
than 1 percent. This means that there is greater than
99 percent probability that the structure will survive.
However, because of the volume effect recognized by
W. Weibull (1939), the probability of survival for a
large structure will be less than that for a smaller
structure with the same operating stress.

In view of the aforementioned, it was the objec-
tive of the work reported herein (1) to analyze large
sample sizes by using two-parameter Weibull analysis to
determine the comparative fracture strength of two
batches of the same material, (2) to determine by using
Weibull statistics the minimal specimen size necessary
to determine the fracture strength of a material, (3) to
determine by combining design and statistical methods
the relative weight and survivability of a pressure
vessel, and (4) to investigate the applicability of
three-parameter Weibull analysis to fracture analysis.



STATISTICAL METHOD

The Weibull distribution function linearizes most
engineering data distributions, making it possible to
estimate a population of infinite size from small
amounts of data (Weibull; 1939, 1951). The Weibull
distribution function can be expressed as

X -, m
FO) =1 - expl-{— H
0

where for this investigation the parameters are
FOx) statistical fraction of specimens that failed
at given stress or lower

X stress

Xy stress below which no specimens failed (loca-
tion parameter)

Xo characteristic strength, stress at which
63.2 percent of specimens failed

m Weibull stope or modulus

The three Weibull parameters x;, Xg, and m are
assumed to be constants of the material. When x, is
assumed to be zero, the three-parameter Weibull dis-
tribution function becomes known as a two-parameter
Weibull distribution function. The Weibull siope or
modulus m is a measure of material homogeneity. A
high value of m indicates a high degree of
homogeneity.

Equation (1) can be rearranged to form an equa-
tion for a straight line as follows:

1
[ty = m OG- x) = Inx )@

In this form a plot of the distribution function should
be Tinear in a coordinate system where the ordinate is
In 1n{1/01 - F(x)]} and the abscissa is In(x - xy).

After the method of Johnson (1959) is used to
obtain values of F(x), the data set is arranged in
order of increasing stress. Each stress value then has
an order number according to its position in the list.
Then from applicable statistical tables of median
ranks, each number is converted to a median rank, which
is the value of F(x) for that particular data.

Values of F(x) and x - x, can be plotted on
Weibull probability paper as 1In In{1/{1 - F(x)1} or
Tn In{1/1S(x)1}, where S is the probability of sur-
vival (equal to 1 - F(x)) as a function of the log of
strength. The plot will be linear for the correct value
of xy, which is also called the location parameter.

If the original plot of the data is a straight
line, then x; 1is assumed to be zero (i.e., the mini-
mum stress below which no specimens can fail is zero).
If the original plot concaves downward, then there is
some finite stress below which no specimens fail. The
true value of x; can be found by substituting assumed
values into the expression x - x; until the Weibull
plot becomes linear.

RESULTS AND DISCUSSION

Two separate batches of A357-T6 cast aluminum
were fracture tested by the U.S. Air Force in accord-
ance with ASTM standards (ASTM, 1986). These data are
shown in the two-parameter Weibull plots of Fig. 1.
There were 354 coupon specimens fracture tested of
batch 1 and 388 of batch 2. These data were subjected

to both two-parameter and three-parameter Weibull
analyses. The results of these analyses were applied
to the design of a hypothetical pressure vessel shell
to determine the order of merit for weight and
survivability.

Comparative Fracture Strength

A material's fracture strength is usually defined
as the mean or average stress at which specimen failure
occurs. The mean fracture strengths for batches 1
and 2 (given in Table I) were 357.0 and 361.0 MPa
(51 783 and 52 362 psi), respectively. The difference
between these values is insignificant, oniy
.1 percent.

Since high reliability is usually desired, more
concern is generally given to the prediction of frac-
ture strengths at low probabilities of failure rather
than at the mean. Figure 2 shows the estimated fail-
ure distributions of batches 1 and 2 extrapolated to
show probabilities of failure to the 0.0001-percent
level. The x axis was scaled linearly to better show
the differences in the prediction of fracture strength
between the two batches than could be realized from a
Weibull plot. The differences in the estimate of frac-
ture strength increased between batch 1 and batch 2
with decreasing probability of failure. At a proba-
bility of failure of 0.0001 percent (99.9999 percent
probability of survival), the estimated fracture
strengths were 270.1 MPa (39 178 psi) for batch 1 and
234.1 MPa (33 948 psi) for batch 2. This difference
is 14.3 percent.

Comparison of Weibull Parameters

The two-parameter Weibull plots of batches 1 and 2
shown in Fig. 1 exhibit very high Weibull slopes,
thereby indicating a high degree of material homoge-
neity. Table I shows the results of this amalysis.
The Weibull slopes or moduli for batches 1 and 2 are
47.5 and 30.6, respectively. The fact that these
slopes differ by 43.3 percent is at first deceiving.
It is important to realize that the Weibul} modulus, or
Weibull slope, is defined as the tangent of the angte
(in degrees) of the curve. As an angle approaches 90°,
the tangent of the angle rapidly approaches infinity.
Since the Weibull plots for batches 1 and 2 are nearly
vertical (almost 90°), a slight difference between the
respective angles results in a large difference in the
tangents, and hence the Weibull slopes. For example, a
Weibull modulus of 47.5 represents an angle of 88.8°,
and a modulus of 30.6 represents an angle of 88.1°.
The difference in angle is less than 1°. Hence, there
is actually no significant difference between the
slopes of batches 1 and 2.

The characteristic strengths of the two batches
were found to vary by only 1.73 percent, being
361.2 MPa (52 396 psi) for batch 1 and 357.6 MPa
(53 311 psi) for batch 2. These differences are also
insignificant. For the two batches of cast aluminum
considered here, the Weibull parameters were found to
be nearly the same, as commonly assumed.

Determination of Minimal Sample Size

Large sample sizes are generally desirable in sta-
tistical analysis because of the consistency and accu-
racy in the results obtained. The disadvantage of such
a practice is, obviously, the increase in cost. An
important issue confronting the engineer then is the
minimal sample size needed to determine a material's
fracture strength.

The stresses at which specimen failure occurred
within the batch were ranked in increasing order. Ran-
dom numbers were then generated by a computer programmed
to generate numbers only within the range of the number
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of specimens contained in the batch. For example,
since there were 354 specimens in batch 1, random num-
bers were generated within the range 1 to 354. The
stresses ranked in the batch corresponding to the num-
bers generated randomly were selected to form data sub-
sets consisting of 10, 20, and 30 samples. Hence,
these samples represented collections of data that
could have been obtained from fracture experiments had
only so many coupon specimens been used.

Weibull plots of the computer-generated samples
for batch 2 are shown in Fig. 3. For easy comparison,
these samples, along with their parent distributions,
are shown plotted on a semilogarithmic graph in Fig. 4.
A summary of the results is given in Table II. As can
be seen for batch 1, using only 30 samples yielded
nearly the same estimated failure distribution as that
of the parent (354 samples). There was also no signif-
icant difference in using 10 samples. The overall
failure distribution derived from 20 samples deviated
the most from the parent distribution.

For batch 2 all the computer-generated samples
gave different failure distributions than the parent
distribution (388 samples). The failure distribution
derived from 20 samples was the closest to that of the
parent, being only slightly better than 30 samples.

Ten samples deviated the most from the parent distribu-
tion. However, the characteristic strength and the
mean strength obtained from using 10 samples were not
significantly different from those of the parent
values.

The effect of varying the sample size on the
Weibull parameters and the fracture strengths both at
the mean and the estimation at the 0.0001-percent fail-
ure probability level is also shown in Table II. The
variation of fracture strength from the parent distri-
bution was Tess than 15.5 percent for sample sizes of
20 or more, or approximately the same as the variation
from batch 1 to batch 2. This would suggest that for
an estimate of high probabilities of survival, a mini-
mum sample size of 20 be used.

Generally, the Weibull slope or modulus obtained
from using only 10 samples was the least accurate among
all the computer-generated samples in comparison with
the slope of the parent distribution. However, a vari-
ation in modulus from 30.6 to 94.5 means a change in
angle of only 1.2°.

DeSalvo (1970) studied the effect of sample size
on estimating the Weibull slope m from computer-
generated samples of parent distributions. For the
range of m values (3 to 30) and sample sizes (10
to 100) studied, the coefficient of variation for the
estimate of m was found to be about (1/n)0-5,
According to this result, a variation in m of
31.6 percent could then be expected from a sample size
of 10.

Effect of Sample Size on Confidence Limits

The fewer the samples used in estimating the fail-
ure distribution, the less confidence can be had in the
failure predictions from these distributions. Johnson
(1959) discusses the mathematics of determining the
confidence limits of the failure distribution. Using
his method the effect of varying sample size on confi-
dence limits was studied.

Six separate groups of samples, having sample
sizes of 88, 35, 17, 11, 8, and 7, were formed from
batch 1. The subgroup consisting of 88 samples was
formed by extracting every fourth data point from the
ordered data of batch 1. Similarly, the 35, 17, 11,

8, and 7 sample sizes were formed by taking every 10th,
20th, 30th, 40th, and 50th data point, respectively.
Forming data subsets in this manner was necessary in
order to keep the estimated failure distributions
approximately the same for each sample group, since

confidence Timits are also affected by the Weibull
stope.

Computer-generated plots showing the Weibull
lines obtained from the subgroups in addition to their
respective 95-percent confidence bands are shown in
Fig. 5. The 95-percent confidence bands indicate that
in 95 percent of all possible cases the true population
will fall within the enclosing bands. As can be seen,
the fewer the number of samples used, the wider is the
confidence band surrounding the distribution. This
indicates that less confidence can be had in population
estimates obtained from smaltler sample sizes, the
degree of which can be seen in Fig. 5.

Determination of Minimum Failure Stress

A two-parameter Weibull distribution was used in
Fig. 1 to characterize the strength probability for
cast aluminum. That is, the location parameter x, is
zero. This implies that the minimum stress below which
no specimens fail is zero. This idea is a theoretical
convenience. However, experience suggests that there
may be nonzero values of stress below which specimens
will always survive fast fracture. The assumption of a
zero minimum strength is perhaps too conservative for
many applications where cost, weight, or both are crit-
ical. This idea was also recognized by Shih (1980),
who suggested that a three-parameter Weibull distribu-
tion be used to model the failure distribution of
brittle materials.

The two-parameter Weibull plots of cast aluminum
fracture data shown in Fig. 1 conform very well to a
straight line. For such a situation can a nonzero
value of x,; be obtained? A methodology to meet this
objective was explored.

The fracture strength of the weakest specimen in
the batch was used as the initial estimate of x,. The
quantity x - x, was then obtained for each point by
subtracting this estimate of x; from the fracture
strength of each specimen. These new values were plot-
ted on Weibull paper with the same failure probabili-
ties as before. This is an established method for
finding xy as given by Moyer et al. (1962).

Smaller estimates of the location parameter x
were found to result in greater linearity. In fact,
the Weibull plot became more linear as xy approached
zero. However, there appeared to be a point in the
process where increasingly smaller values of x
resulted in very Tittle change in the linearity of the
data. The value of x; at this point was then taken
to be the most accurate estimate. Following this
method a Jocation parameter of 268.9 MPa (39 000 psi)
was assumed for batch 1 and 262.0 MPa (38 000 psi) for
batch 2.

Figure 6 shows the failure distribution of batch 2
resulting from three-parameter Weibull analysis. The
results of using two- and three-parameter Weibull sta-
tistics are compared in Fig. 7. For both batches the
estimated probabilities of failure between the two-
and three-parameter models became increasingly differ-
ent as the fracture probability decreased. Assuming
that there is indeed a nonzero minimum strength below
which no specimens will fail, these results indicate
that there are exceptions to the established rule for
determining the location parameter, since any nonzero
value substituted for x; did not result in greater
linearity of the data. Otherwise, it must be assumed
that there is a probability of failure at any stress.

Extrapolation of Test Specimen Data to Full-Size

Structures
Three methods are typically used for establishing
the relationship between a structure's strength and its



reliability. These methods include testing full-scale
models, small-scale models, or small specimens.

Testing full-scale models is the simplest approach
"hecause it provides a direct relationship between reli-
ability and strength for the full-size structure.

This method, however, is neither practical nor cost
effective.

For tests on small-scale models and small speci-
mens a theory is needed to determine the effect of size
on the fracture strength of the structure. The weakest
link theory (WLT) fills this need. This theory is
based on the idea that physical bodies, envisioned as
divided into smal! volumes, can be modeled as a chain,
with the strength of the chain determined by its weak-
est link. This is a conservative theory, since it
assumes that failure at any point is failure of the
entire structure. In other words, it is assumed that
nothing prevents a crack from propagating throughout
the material. The probability of survival S of a
chain consisting of n identical links is then

n
S = S; 3
J

where Sj is the probability of survival of each link.
For“two structures of identical material with sim-

ilar geometries (and stress conditions), the probabil-

ity of survival of the smaller structure of stressed

volume V) can be scaled to that of the larger struc-
ture of stressed volume Vy by
' VIV
2°71
S,= S, (4

This relationship can be used to scale coupon specimens
to full-size structures by a method proposed by
Zaretsky (1987). For brittle components possessing
nonuniform stress distributions and multiaxial stress
states, a methodology for determining the structure's
reliability was proposed by Barnett et al. (1966).

For situations where the stress distribution can
be assumed to be uniform, the following design method-
ology is proposed:

(1) Perform a Weibull analysis on tensile test
specimens with gage volume V;, obtaining Weibull
parameters m, xg, and xy.

(2) Perform a stress analysis of the structure.
Relate the operating stress x to a structural parame-
ter such as the wall thickness of a pressure vessel.

(3) Assume a value for the parameter or parameters
to be determined and calculate the resulting operating
stress.

(4) Calculate the stressed volume V, of the pro-
posed structure.

(5) Determine the structure's reliability S; by
direct scaling:

m VZ/vl

X - Xu
s, ={exp -|| — (5
o

Note that for brittle materials such as ceramics under
multiaxial stress, it is necessary to use a multiaxial
stress theory to determine the effect of this stress
state on the fracture probability. Combine this theory
with Eq. (5) and calculate the probabitity of survival.

(6) Repeat steps 3 to 5 until a satisfactory reli-
ability is obtained.

As a demonstration, this methodology was applied
to the design of a hypothetical spherical pressure ves-
sel shell, using the A357-T6 cast aluminum data ana-
lyzed in this report. The density of this material is

2.68 g/cm3 (0.097 1b/in.3). The inside radius R of
the shell and the internal pressure P were given as
0.305 m (12 in.) and 1.72 MPa (250 psi), respectively.
The shell thickness t was determined from a required
reliability of 99.999998 percent.

The equation relating the stress x in the wall
to the thickness was derived from elementary stress
analysis (Gere and Timoshenko, 1984) and is given by

Bl
ol

(6)

=
i

~

pe

Assuming a value for t, the stress in the wall was cal-
culated from Eq. (6), and the stressed volume Vp of
the shell was determined from

4 3 3
V2=3[(R+t)—R] 7
The probability of survival of the shell was then cal-
culated by substituting the values of x and Vp into
Eg. (5) along with the Weibull parameters obtained from
Weibull analysis of the cast aluminum specimens with
gage volume V7. Sample calculations performed in
Appendix A show each step in the design algorithm.
Appendix B gives the derivation of a single design
equation for spherical pressure vessel shells.

Figure 8 shows the effect of shell thickness on
the structure's probability of survival. Within a
very small range the probability of survival was highly
sensitive to changes in the shell thickness. For
shell thicknesses between 0.80 and 0.93 mm (0.032 and
0.036 in.), the probability of survival increased from
0.0008 to 98.66 percent for batch 1. The probability
of survival for a shell designed by using the data of
batch 2 was similarly observed to go from 0.0005 to
98.5 percent for an increase in wall thickness of only
0.211 mm (0.0083 in.).

The relationship between the weight of the spher-
ical shell and the probability of survival is shown in
Fig. 9. The probability of survival increased from
nearly 0 to over 99 percent with the addition of
less than 0.70 kg (1.5 1b) to the total weight of the
structure.

Comparison with ASME Pressure Vessel Code

With probabilistic design methods structural
parameters are often determined by the required relia-
bility. Conventional design methods usually involve
safety factors that are used to ensure that the operat-
ing stress will never exceed the strength of the mate-
rial. The size of the structure is then determined by
the safety factor used. Safety factors are typically
used in design codes prescribed by the American Society
of Mechanical Engineers (ASME).

A comparison was made between the results of
designing the spherical shell described previously by
using Weibull statistics and designing it by using the
applicable ASME code (ASME, 1987). The required shell
thickness according to this code is given by

PR

3E-0.2P (8)

t =

where S is the maximum allowable stress and is
defined as the ultimate tensile strength divided by a
safety factor of 4. From military standard specifica-
tions the ultimate tensile strength of A357-T6 cast
aluminum is 310.3 MPa (45 000 psi) (Department of
Defense, 1987). For this comparison the value of the
joint efficiency €& was taken as unity since joints
are not accounted for in the Weibull design
methodology.
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Table III shows the thickness and weight of the
pressure vessel shell resulting from the application
of both design methods. The minimum shell thickness
from the ASME code was 3.39 mm (0.133 in.) and the
weight was 10.8 kg (23.8 1b). But for a reliability
of 99.999998 percent, the shell designed from Weibull
statistics had a thickness of only 0.14) mm (0.055 in.)
and a weight of 4.4 kg (9.8 1b). According to
Weibull's theory the shell designed by the ASME code
has virtually no chance of fracture failure (assuming
there are no major flaws). However, the weight of the
shell can be cut in half and still have an extremely
high probability of survival. A correlation between
probability of survival and safety factor for a spheri-
cal pressure vessel shell is shown in Fig. 10. At a
safety factor of 1.25 the probability of survival was
100 percent.

SUMMARY OF RESULTS

Two separate batches of cast aluminum were frac-
ture tested in accordance with ASTM standards by the
U.S. Air Force. There were 354 coupon specimens frac-
ture tested in batch 1 and 388 in batch 2. These data
were subjected to both two-parameter and three-
parameter Weibull analyses. The results were applied
to the design of a hypothetical pressure vessel shell
to determine the order of merit for weight and surviv-
ability. The following results were obtained:

1. The mean fracture strengths for batches 1 and 2
of A357-T6 cast aluminum were 357.0 and 361.0 MPa
(51 783 and 52 362 psi), respectively. The difference
between these values is insignificant, only 1.1 per-
cent. However, at a 99.999% percent probability of
survival (0.0001 percent probability of failure), the
estimated fracture strength varied by 14.3 percent.

2. The mean fracture strengths determined by using
10, 20, 30, and up to 388 test specimens were not sig-
nificantly different. At a 99.9999 percent probability
of survival the variation of fracture strength was less
than 15.5 percent for sample sizes of 20 or more, or
approximately the same as the variation from batch to
batch. This suggests a minimum sample size of 20 to
determine an estimate of the probability of survival
for materials such as cast aluminum.

3. According to the established rule for determin-
ing the location parameter on the basis of the linear-
ity of the original two-parameter Weibull plot of the
data, the stress below which no specimens fail must be
assumed to be zero for A357-T6 cast aluminum.

4. The ASME pressure vessel code for the design
of probabilistic spherical pressure vessel shells was
found to be much more conservative than the design
methodology presented.
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APPENDIX A - SAMPLE CALCULATIONS

Theoretical Stress in Thin-Walled Spherical Pressure
Vessel

o
X

(A1)

>
[}

~y
“r

where
X stress
p internal pressure

R inside radius

t wall thickness

Using P = 1.72 MPa (250 psi), R = 0.305 m (12 in.),
and t = 1.02 mm (0.040 in.) gives
(2 LT090.309) _her 5y (37,3 ksh)
=~ o.00100) - 2 :

Note that a general rule for a thin-walled pressure
vessel is that the ratio of radius R to wall thick-
ness t should be greater than 10.

Stressed Volume of Spherical Shell

V- % [(R NS R3] (A2)

where V is the stressed volume.
values of R and t gives

Using the previous

[(12 +0.040)° - 123]

wie

[<o.305 + 0.00102)3 - o.3os3]

i
wls

6 3

- 381x10°8 m3 (23.2 in. D

Probability of Failure (Test Specimen)

m

X - X,
F(x) =1 - exp|- p (AD)
o)

where

F(x) statistical fraction of specimens that failed at
given stress or lower

X stress

Xy stress below which no specimens failed

Xo characteristic strength, stress at which
63.2 percent of specimens failed

m Weibull slope

Using x = 258.6 MPa (37 500 psi), xy = O,

%o = 361.3 MPa (52 396 psi), and m = 47.5 gives

47.5

258.6 - 0 _

FOO = 1 - exp{—<——-—36].3 ) } - 0.000000126
Probability of Survival (Test Specimen)

Sy =1 - Fx) (Ad)
where S; s the probability of survival of the test
specimen. For the value of F(x) given above, Sy 1is
then
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Sy = 1 - 0.000000126 = 0.999999874

Probability of Survival (Fuyll-Size Structure)

(VZ/VI)

S, =S,

> = (AS)
where Sy and Yy are the probability of survival
and stressed volume of the full-size structure,
respectively, and Vy is the stressed volume of the
test specimen. For Vp = 0.000381 m3 (23.2 in.dy,
V] = 0.805x10-6 m3 (0.0491 in.3) and the value of

St as given above gives

(0.000381/0.0805x10™%)

S2 = 0.999999874 = 0.999940

ASME Code for Spherical Pressure Vessel Shell

PR

t=5sc-020p (R6)

where the parameters are as follows:

P internal pressure
R inner radius
S maximum allowable stress, S = Syt/n
Syt ultimate tensile strength
n safety factor
£ joint efficiency
For P = 1.72 MPa (250 psi), R = 0.305 m (12 in.),
Syt = 310.3 MPa (45 ksi), n =4, and E = 1 the thick-
ness becomes
‘. (1.72x10%)¢0.305)
2¢310.3x10%) 6

7 (1) - 0.2(1.72x107)

3.39 mm (0.133 in.)

APPENDIX B - DERIVATION OF A DESIGN EQUATION FOR
SPHERICAL PRESSURE VESSEL SHELLS

Since the probability of survival §
one minus the probability of failure, S
by

is simply
can be defined

X=X, m
S=1-F(x) = exp|- X
o]

(8L

The probability of survival of a full-size structure
Sz in relation to the probability of survival of a

coupon specimen S; s given by
V., /v
v, v, v, /v, -\ !
S2 = S] = -F) = jexp -~
X X
o]
(B2)
where V) and Vy are the volumes of the coupon spec-

imen and the full-size structure, respectively.
plifying gives

Sim-

I

(B3)

The volume of the walls of a spherical pressure

vessel is given by
V= % [(R RS R3] (84)
where V is the volume, R s the inside radius, and

t is the wall thickness. Limiting our discussion to
thin-walled spherical pressure vessels, the wall thick-
ness can be defined by

PR
t =35 (BS)
where P is the internal pressure and x is the ten-
sile stress in the walls. Substituting Eq. (BS) into
Eq. (B4) for t and simplifying gives

R (R

which relates the full-size structure's stressed volume
to the operating stress. Now substituting Eq. (B&)
into Eq. (B3) for Vjp gives

(B6)

. 4R3/3V][(]+P/2x)3—1]
=)
exp-
XO

Given the Weibull parameters for the material,
internal pressure, and the required probability of sur-
vival and the inside radius of the vesse! shell,

Eq. (B7) then contains only one unknown - the operat-
ing stress x. MWith the above design specifications,
the operating stress can then be solved by iteration.
Once the maximum operating stress has been established,
the required thickness of the spherical pressure vessel
can be determined from £q. (BS).

S, =

(B7)
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TABLE I. - RESULTS OF TWO-PARAMETER WEIBULL ANALYSES OF FRACTURE DATA

FROM TWO BATCHES OF A357-T6 CAST ALUMINUM SPECIMENS

Batch | Sample | Weibull Fracture strength
size modulus,

m Characteristic, xg Mean 0.0001-Percent

leveld

MPa psi MPa psi MPa psi

1 354 47.5 361.3 52 396 357.0 | 51 783 | 270.1 39 178
2 388 30.6 357.6 53 31 361.0 | 52 362 | 234.1 33 948

Difference, percent 1.7 1.1 14.3

3Fracture strength at a 99.9999 percent probability of survival.

TABLE II. - EFFECT OF VARYING SAMPLE SIZE ON WEIBULL PARAMETERS AND ESTIMATED

FRACTURE STRENGTHS OF A357-T6 CAST ALUMINUM SPECIMENS

Batch | Sample | Weibull Fracture strength

size modulus,

m Characteristic, xq Mean 0.0001-Percent level

MPa psi Difference, MPa psi Difference, MPa psi Difference,
percent percent percent

1 354 47.5 361.3 | 52 396 - 357.0 | 51 783 ——— 270.1 | 39 178 ———

30 47.5 358.9 | 52 054 0.6 354.7 | 51 444 0.6 268.3 | 38 912 0.7

20 35.7 361.5 52 433 N 356.0 | 51 626 .3 245.4 35 594 9.1

10 59.0 357.6 51 869 1.0 354.2 51 377 .8 282.9 41 034 4.7

2 388 30.6 367.6 | 53 3N -— 361.0 | 52 362 - 234.1 | 33 948 ———-

30 46.9 362.6 | 52 584 1.4 358.3 51 961 0.8 270.1 39 169 15.4

20 41.9 367.7 | 53 321 0 362.8 | 52 618 .5 264.4 | 38 352 13.0

10 94.5 367.0 | 53 229 .2 364.8 | 52 910 1.0 317.1 | 45 990 35.5

TABLE TII. - SPHERICAL PRESSURE VESSEL SHELL PARAMETERS

RESULTING FROM ASME AND WEIBULL DESIGN METHODS

[Inside radius of sheil, 0.305 m (i2 in.); internal
pressure, 1.72 MPa (250 psi).]

Design Shell thickness Weight Probability
procedure . of survival,d
mm in. kg b percent
AS”E 3.39 0.133 10.8 | 23.8 100. 000000
Weibull 141 .055 4.4 9.8 99.999998

dAccording to Weibull statistics.
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